

KLINGER®top-chem 2000 – die universelle Hochleistungsdichtung mit Fire-Safe Zertifikat.

KLINGER®top-chem 2000 ist weltweit die einzige Dichtung auf PTFE-Basis mit Fire-Safe Zertifikat. Es ist eine universelle Hochleistungsdichtung aus PTFE, gefüllt mit Siliziumcarbid, welche besonders bei Anwendungen mit hohen Temperaturen und gleichzeitig hohen mechanischen Anforderungen geeignet ist. Dieses Material weist eine exzellente Beständigkeit gegen starke Säuren und Laugen sowie Dampf auf. Es wird hauptsächlich in der chemischen, petrochemischen und der maritimen Industrie eingesetzt.

Basis	PTFE gefüllt mit SiC (Siliziumcarbid).					
Farbe	Grau					
Zertifikate	Sauerstoff-geprüft, DIN-DVGW, DVGW H2-ready (ZP 5123), DIN 16421 (W 270), KTW-BWGL, WRAS Zulassung, TA-Luft, Fire-Safe gem. DIN EN ISO 10497, FDA konform (PTFE),					

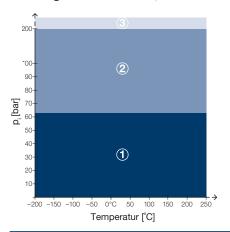
Konform mit der Verordnung (EU) Nr. 1935/2004 (inkl. 10/2011), DNV Zulassung, VDI 2200 blowout

Plattengröße	1500 x 1500 mm				
Dicke	1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm				

Toleranzen

Dicke nach DIN 28091-1 Länge: ± 50 mm Breite ± 50 mm

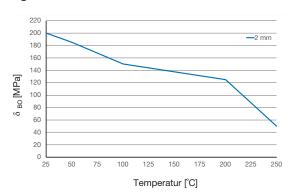
Industrie


Allgemeine Industrie / Chemie / Öl & Gas / Energie / Infrastruktur / Papier & Zellstoff / Marine / Automobilindustrie / Lebensmittel & Getränke / Pharma

TECHNISCHE DATEN - Typische Werte für die Dicke 2,0 mm

Kompressibilität	ASTM F 36 M	%	4
Rückfederung	ASTM F 36 M	%	50
Druckstandfestigkeit DIN 52913	30 MPa, 16 h/150°C	MPa	28
	50 MPa, 16 h/260°C	MPa	36
Standfestigkeit nach KLINGER	Dickenabnahme bei 23°C	%	5
50 MPa	Dickenabnahme bei 260°C	%	11
Dichtheit	DIN 28090-2	mg/(s x m)	0,08
Spezifische Leckrate	VDI 2440	mbar x l/(s x m)	4,46E-06
Dicken- / Gewichtszunahme	H ₂ SO ₄ , 100%: 18 h/23°C	%	1/1
	HNO ₃ , 100%: 18 h/23°C	%	1/2
	NaOH, 33%: 72 h/110°C	%	1/3
Dichte		g/cm ³	2,5
Mittl. Oberflächenwiderstand	ρΟ	Ω	6,9x10E12
Mittl. spezif. Durchgangswiderstand	ρD	Ωcm	2,2x10E12
Mittl. Durchschlagsfestigkeit	Ed	kV/mm	3,6
Mittl. dielektrischer Verlustfaktor	50 Hz	tan δ	0,166
Mittl. Dielektrizitätszahl	50 Hz	εr	10,6
Wärmeleitfähigkeit	λ	W/mK	0,60
ASME-Code Dichtungsfaktoren			
für Dichtungsdicke 2,0 mm	Basisleckrate 0,1mg/s x m	MPa	y 15
			m 3,2

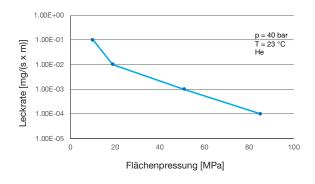
P-T Diagramm - Dicke 2,0 mm



Die Entscheidungsfelder im P-T Diagramm

- 1 In diesem Entscheidungsfeld ist eine anwendungstechnische Überprüfung in der Regel nicht erforderlich.
- 2 In diesem Entscheidungsfeld empfehlen wir eine anwendungstechnische Überprüfung.
- 3 In diesem "offenen" Entscheidungsfeld ist eine anwendungstechnische Überprüfung grundsätzlich erforderlich.

Überprüfen Sie immer die Medienbeständigkeit des Dichtungsmaterials für jeden geplanten Einsatzfall.


Sigma BO

Maximale Flächenpressung im Betriebszustand

Dieses Diagramm zeigt die maximale Flächenpressung in MPa, mit welcher das Dichtungsmaterial in Abhängigkeit von der Betriebstemperatur belastet werden darf. Die Kennlinien gelten für die angegebenen Dichtungsdicken. Im Gegensatz zu Qsmax nach EN 13555 basieren die hier angegebenen Flächenpressungen auf einer maximal zulässigen Dickenreduktion.

Dichtverhalten

Dichtverhalten

Die Grafik zeigt die erforderliche Belastung beim Einbau, um eine bestimmte Dichtheitsklasse zu erzeugen. Die Ermittlung des Diagrammes basiert auf dem Testverfahren gem. EN13555, bei dem der Innendruck an Helium 40 bar beträgt.

Die abfallende Kurve zeigt die Fähigkeit der Dichtung, die Dichtheit mit zunehmender Flächenpressung zu erhöhen.

Chemische Beständigkeitstabelle

Vereinfachte Übersicht über die chemische Beständigkeit in Bezug auf die wichtigsten Gruppen von Substanzen:

KLINGER®top-chem 2000					A: kein oder sehr geringer Angriff		B: geringer bis moderater Angriff			starker Angriff	
Paraffin- Kohlen- wasserstoffe	Kraftstoff	Aromaten	Chlorierte Kohlen- wasserstoffe	Motorenöle	Mineralische Schmierstoffe	Alkohole	Ketone	Ester	Wasser	Säuren (verdünnt)	Basen (verdünnt)
Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

Weitere Informationen zur chemischen Beständigkeit finden Sie unter www.klinger.co.at.

Alle Informationen basieren auf jahrelanger Erfahrung in der Herstellung und Anwendung von Dichtungsmaterialien. Angesichts der Vielzahl möglicher Installations- und Betriebsbedingungen kann man jedoch nicht in allen Anwendungsfällen endgültige Schlüsse hinsichtlich Verhalten der Dichtverbindung ziehen. Aus den in diesem Datenblatt angegebenen Informationen ergeben sich keine Garantien oder sonstige Ansprüche. Diese Ausgabe ersetzt alle bisherigen Versionen. Änderungen vorbehalten.

