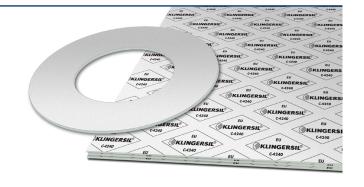


KLINGERSIL® C-4240 is a gasket specially designed for the individual requirements of the drinking water supply.

Application in noncritical media such as drinking water, water, oils, fuels, hydrocarbons and inert gases.

Basis composition NBR (drinking water type) bonded,

reinforced with cellulose fibers.
All raw materials are positively assessed with regard to their use


in drinking water.

Color White

Certificates DIN-DVGW,

DVGW H2-ready (ZP 5123),

DIN 16421 (W 270), DIN 30653 (VP 401), KTW-BWGL (P2), WRAS approval, ACS approval, SVGW approval

Sheet size 2000 x 1500 mm

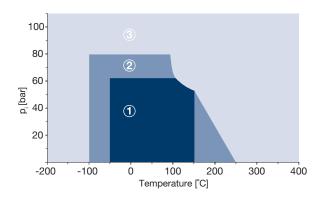
Thickness 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm

Tolerances

Thickness according to DIN 28091-1

Length: \pm 50 mm Width: \pm 50 mm

Industry


General Industry / Oil & Gas / Energy / Infrastructure / Pulp & Paper / Marine / Automotive / Food & Beverage

TECHNICAL DATA - Typical values for a thickness of 2.0 mm

Compressibility	ASTM F 36 J	%	10
Recovery	ASTM F 36 J	%	45
Stress relaxation DIN 52913	50 MPa, 16 h/175°C	MPa	35
KLINGER cold/hot compression	thickness decrease at 23°C	%	10
50 MPa	thickness decrease at 200°C	%	15
Tightness	DIN 28090-2	mg/(s x m)	0.01
Thickness increase after fluid immersion	oil IRM 903: 5 h/150°C	%	5
ASTM F 146	fuel B: 5 h/23°C	%	10
Density	DIN 28090-2	g/cm ³	1.75

P-T Diagramm - Thickness 2.0 mm

The area of the P-T diagram

- 1 In area one, the gasket material is normally suitable subject to chemical compatibility.
- 2 In area two, the gasket material may be suitable but a technical evaluation is recommended.
- ③ In area three, do not install the gasket without a technical evaluation. Always refer to the chemical resistance of the gasket to the media.

Chemical resistance chart

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

KLINGERSIL®	C-4240					A: small or no	attack	B: weak	till moderate att	ack C:	strong attack
Paraffinic hydrocarbon	Motor fuel	Aromates	Chlorinated hydrocarbon fluids	Motor oil	Mineral lubricants	Alcohol	Ketone	Ester	Water	Acid (diluted)	Base (diluted)
Α	В	С	С	Α	В	Α	С	С	Α	С	С

For more information on chemical resistance please visit www.klinger.co.at.

All information is based on years of experience in production and operation of sealing elements. However, in view of the wide variety of possible installation and operating conditions one cannot draw final conclusions in all application cases regarding the behaviour in gasket joint. The data may not, therefore, be used to support any warranty claims. This edition cancels all previous issues. Subject to change without notice.

